COMPARISON OF TWO NUMERICAL METHODS FOR FRACTIONAL-ORDER RӦSSLER SYSTEM
نویسندگان
چکیده
منابع مشابه
Comparison of acceleration techniques of analytical methods for solving differential equations of integer and fractional order
The work addressed in this paper is a comparative study between convergence of the acceleration techniques, diagonal pad'{e} approximants and shanks transforms, on Homotopy analysis method and Adomian decomposition method for solving differential equations of integer and fractional orders.
متن کاملPresentation of two models for the numerical analysis of fractional integro-differential equations and their comparison
In this paper, we exhibit two methods to numerically solve the fractional integro differential equations and then proceed to compare the results of their applications on different problems. For this purpose, at first shifted Jacobi polynomials are introduced and then operational matrices of the shifted Jacobi polynomials are stated. Then these equations are solved by two methods: Caputo fractio...
متن کاملTWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND
In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...
متن کاملHigh Order Numerical Methods for Fractional Terminal Value Problems
In this paper we present a shooting algorithm to solve fractional terminal (or boundary) value problems. We provide a convergence analysis of the numerical method, derived based upon properties of the equation being solved and without the need to impose smoothness conditions on the solution. The work is a sequel to our recent investigation where we constructed a nonpolynomial collocation method...
متن کاملHigher order numerical methods for solving fractional differential equations
In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0 < α < 1. The order of convergence of the numerical method is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Математички билтен/BULLETIN MATHÉMATIQUE DE LA SOCIÉTÉ DES MATHÉMATICIENS DE LA RÉPUBLIQUE MACÉDOINE
سال: 2020
ISSN: 0351-336X,1857-9914
DOI: 10.37560/matbil2010053s